Conditional Moment Generating Functions for Integrals and Stochastic Integrals

نویسندگان

  • Charalambos D. Charalambous
  • Robert J. Elliott
  • Vikram Krishnamurthy
چکیده

In this paper we present two methods for computing filtered estimates for moments of integrals and stochastic integrals of continuous-time nonlinear systems. The first method utilizes recursive stochastic partial differential equations. The second method utilizes conditional moment generating functions. An application of these methods leads to the discovery of new classes of finitedimensional filters. For the case of Gaussian systems the recursive computations involve integrations with respect to Gaussian densities, while the moment generating functions involve differentiations of parameter dependent ordinary stochastic differential equations. These filters can be used in Volterra or Wiener chaos expansions and the expectation-maximization algorithm. The latter yields maximum-likelihood estimates for identifying parameters in state space models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The using of Haar wavelets for the expansion of fractional stochastic integrals

Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.  

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Path Integrals for Stochastic Neurodynamics Path Integrals for Stochastic Neurodynamics

We present here a method for the study of stochastic neurodynamics in the framework of the "Neural Network Master Equation" proposed by Cowan. We consider a model neural network composed of two{state neurons subject to simple stochastic kinetics. We introduce a method based on a spin choerent state path integral to compute the moment generating function of such a network. A formal construction ...

متن کامل

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2003